Weighted Coloring in Trees

نویسندگان

  • Júlio Araújo
  • Nicolas Nisse
  • Stéphane Pérennes
چکیده

A proper coloring of a graph is a partition of its vertex set into stable sets, where each part corresponds to a color. For a vertex-weighted graph, the weight of a color is the maximum weight of its vertices. The weight of a coloring is the sum of the weights of its colors. Guan and Zhu defined the weighted chromatic number of a vertex-weighted graph G as the smallest weight of a proper coloring of G (1997). If vertices of a graph have weight 1, its weighted chromatic number coincides with its chromatic number. Thus, the problem of computing the weighted chromatic number, a.k.a. Max Coloring Problem, is NP-hard in general graphs. It remains NP-hard in some graph classes as bipartite graphs. Approximation algorithms have been designed in several graph classes, in particular, there exists a PTAS for trees. Surprisingly, the time-complexity of computing this parameter in trees is still open. The Exponential Time Hypothesis (ETH) states that 3-SAT cannot be solved in sub-exponential time. We show that, assuming ETH, the best algorithm to compute the weighted chromatic number of n-node trees has time-complexity nΘ(logn). Our result mainly relies on proving that, when computing an optimal proper weighted coloring of a graph G, it is hard to combine colorings of its connected components. 1998 ACM Subject Classification G.1.6 Optimization

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Max Edge Coloring of Trees

We study the weighted generalization of the edge coloring problem where the weight of each color class (matching) equals to the weight of its heaviest edge and the goal is to minimize the sum of the colors’ weights. We present a 3/2-approximation algorithm for trees.

متن کامل

Convex Recolorings of Strings and Trees

A coloring of a tree is convex if the vertices that pertain to any color induce a connected subtree; a partial coloring (which assigns colors to some of the vertices) is convex if it can be completed to a convex (total) coloring. Convex coloring of trees arises in areas such as phylogenetics, linguistics, etc. eg, a perfect phylogenetic tree is one in which the states of each character induce a...

متن کامل

Edge ranking of weighted trees

In this paper we consider the edge ranking problem of weighted trees. We prove that a special instance of this problem, namely edge ranking of multitrees is NP-hard already for multitrees with diameter at most 10. Note that the same problem but for trees is linearly solvable. We give an O(log n)-approximation polynomial time algorithm for edge ranking of weighted trees.

متن کامل

Weighted and locally bounded list-colorings in split graphs, cographs, and partial k-trees

For a fixed number of colors, we show that, in node-weighted split graphs, cographs, and graphs of bounded tree-width, one can determine in polynomial time whether a proper list-coloring of the vertices of a graph such that the total weight of vertices of each color equals a given value in each part of a fixed partition of the vertices exists. We also show that this result is tight in some sens...

متن کامل

Bounded Max-colorings of Graphs

In a bounded max-coloring of a vertex/edge weighted graph, each color class is of cardinality at most b and of weight equal to the weight of the heaviest vertex/edge in this class. The bounded max-vertex/edge-coloring problems ask for such a coloring minimizing the sum of all color classes’ weights. In this paper we present complexity results and approximation algorithms for those problems on g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014